Abstract

Computational rod theory predicts experimental characteristics of DNA looping by the L repressor

Todd Lilian1, Sachin Goyal1, Noel C. Perkins1, Jens-Christian Meiners2, and Jason D. Kahn3

1Department of Mechanical Engineering (University of Michigan, Ann Arbor), 2Department of Physics and Biophysics Research Division (University of Michigan, Ann Arbor), and 3Department of Chemistry and Biochemistry (University of Maryland, College Park)

Introduction

Why study DNA looping?

- DNA looping is a known gene regulatory mechanism
- LacI is a well studied example with abundant experimental data
- Gene repression is a periodic function of inter-operator DNA length (phasing)
 - Period ~ 1 helical turn (~36 deg./bp)
 - See [1] for example

- Intrinsically curved DNA forms hyperstable loops [2-4]
 - Changing the phase of an intrinsically curved domain yields distinct hyperstable loops
 - FRET and gel mobility assays measure loop topology [2-4]
 - Competition assays measure loop energetics (stability) [2]
 - Gel shift assays measure linking number distribution [2]

Potential binding topologies [7, 9]

Questions

- Do our computations agree with experiments?
- Can our results suggest new experiments?

Method

Rod model [5-7] describes DNA mechanics

- Supercoiling
- DNA-protein interaction
- DNA looping (described here)

Representing intrinsic curvature of three sequences (11C12, 9C14, 7C16) introduced in [2]

- Composed of straight domains and intrinsically curved A-tract domains

A-tract domain can be represented by a helical rod [8]

- Phasing of A-tract domain is parameterized by Atrp and Alt, to enable computation of all possible locations of A-tract within this sequence

Comparing Computational Theory and Experiment

Energetically preferred binding topology

- Two distinct looped states: Computations reveal A1 and P1 topologies as energetic minima

- Energies favor A1 state: Greater probability of achieving A1 state in designated sequences

Loop energetics

- Range of loop stabilities: Elastic deformation energy varies from min. ~5 kT to a max. ~12 kT
- Comparable minima for different states:
 - Both P1 and A1 loops yield comparable energies ~5 kT

Loop topology

- Range of linking numbers (\(L_k \)):
 - Minimum energy loops represent a range of possible \(L_k \)

Loops vary in size:

- Minimum energy A1 loops are generally larger than minimum energy P1 loops

Suggested Future Experiments

- Design most/least stable loops within the designed sequence space
- Design a DNA sequence that forms A1 and P1 topologies with equivalent energetics

References